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Abstract — Hyperspectral imaging sensors provide image data containing both
spatial and detailed spectral information. However, due tothe low spatial resolution
or to the presence of intimate mixtures in the scene, the spectral information acquired
by the hyperspectral sensors are actually mixtures of the spectral signatures of the
materials. These mixtures are modelled as linear or nonlinear in the literature. In this
study, convolutional neural network is proposed for linearhyperspectral unmixing.
The spectral signatures of some materials, taken from the ASTER and USGS spec-
tral libraries, are used to construct a specific library to beused in the experiments.
These signatures in the constructed library are used to obtain synthetic mixture pixels
within the framework of the linear mixture model. These mixture pixels are used for
training a convolutional neural network. The trained convolutional neural network
is used for determining (i) which materials in the library are included in mixed pixels
and (ii) their corresponding fractional abundances that best model each mixed test
pixel. Also, the effects of the number of training data and the level of noise on unmix-
ing performance are investigated. It has been shown that promising unmixing results
have been achieved by using the convolutional neural network.
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1 Introduction

During recent years, convolutional neural network has beengaining a large amount of
interest in various vision-related tasks such as scene labeling [1], digit classification [2],
character classification [3], face recognition [4]. Besides vision tasks, CNNs have been
demonstrated to be successful in other areas as well, such asspeech recognition [5] and
natural language processing [6]. In this study, convolutional neural network is proposed
for hyperspectral unmixing.
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Hyperspectral imaging sensors provide image data containing both spatial and detailed
spectral information [7]. However, due to low spatial resolution of the sensors or to
the presence of intimate mixtures in the scene, the spectralinformation acquired by the
hyperspectral sensors are actually mixtures of the spectral signatures of the materials [8].
The mixtures are modelled as linear or nonlinear in the literature. In this study, we focus
on the linear mixing model. In linear spectral unmixing, theaim is to decompose the
measured spectrum of a mixed pixel into reference spectral signatures of the materials,
also called endmember (estimating endmembers), and estimate a set of corresponding
fractions, also called abundances that indicate the proportion of each endmember present
in the pixel (estimating corresponding abundances)[9]. For p endmembers, each having
L bands, the linear mixing model is expressed as:

y =

p
∑

i=1

aimi + w = Mα + w (1)

wherey is theL × 1 pixel spectrum vector received by sensor,M is theL × p matrix
whose columns are theL× 1 endmembersmi; a is thep× 1 fractional abundance vector
consisting ofai, i, =1 . . . p andw is theL × 1 additive perturbation vector (noise and
modeling errors). The fractional abundances are subject tothe following constraints:

ai ≥ 0, i = 1 . . . p (2)
p

∑

i=1

ai = 1

The constraints are termed as the abundance nonnegativity constraint (ANC) and the
abundance sum constraint (ASC) respectively.

Linear spectral unmixing has been extensively researched in the recent years. Many
methods have been developed for this problem. Most of these methods are geometrical
or statistical based approaches. In geometrical based approaches, some methods make
an assumption for endmember extraction that there is at least one pure pixel in the scene
[10] [11] [12]. However, this assumption cannot be always guaranteed. Some of the
other spectral unmixing methods do not make the pure pixel assumption for endmember
extraction [13] [14] [15] [16]. However, these methods generate endmember signatures
which are often not associated with the real physical signatures [8] [9] [17]. In addition,
results obtained by these geometrical based methods are unsatisfactory when the spectral
mixtures are highly mixed. In these cases, statistical methods are used as an alternative
[18] [19]. On the other hand, statistical methods have higher computational complexity
in comparison with geometrical based methods [20]. These drawbacks and limitations
have led to the use of spectral libraries instead of endmember estimation. When using
libraries, the observed mixed pixel can be expressed as linear combinations of a number
of pure spectral signatures which are taken from library. Thus, unmixing is equivalent to
determining which materials in the library are included in mixed pixels and their corre-
sponding fractional abundances that can best model each mixed pixel in the scene. Hence,
sparse regression based methods has been developed for hyperspectral unmixing [21] [22]
[23].
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In this paper, a convolutional neural network is proposed todetermine which materials
in the library are included in mixed pixels and their corresponding fractional abundances
that can best model each mixed test pixel. Also, the effects of the number of training data
and the level of noise on unmixing performance are investigated on synthetic hyperspec-
tral data. This paper is organized as follows: in section 2 the proposed CNN architecture
for hyperspectral unmixing is introduced. In section 3 the experiments using the synthetic
data are explained. In section 4 the paper is concluded with our remarks.

2 Proposed CNN Architecture

In this study, convolutional neural network is proposed forhyperspectral unmixing. Con-
volutional neural network structure which contains two convolutional layer and a fully
connected layer is used in the experiments. CNN is directly applied on the spectral do-
main.

The proposed CNN architecture (the layers, the number of filter sizes and number of
filters) is given in Figure 1. Fixed learning rate which is equal to 0.01, is used. The
stopping condition for the CNN model is the fixed iteration number which is set to 2000.
Our experiments have shown that this is a large enough numberto garantee convergence.
Stochastic gradient descent is used as a learning method andcross entropy is used as a
cost function. All the programs are implemented using Python language and Tensorflow
[24] library.

Convolutional Layer (10x1) #64

Convolutional Layer (20x1) #32

Fully Connected Layer #256

Output 

Layer

Input Layer

Figure 1: The proposed CNN architecture: input represents apixel spectral vector, fol-
lowed by 2 convolution layers, a fully connected layer and finally the output layer.

The mean estimation error is used to evaluate the abundance estimations. The error is
defined as:

Mean Estimation Error=
1

n

1

k

n
∑

i=1

[

k
∑

j=1

[aij − âij ]
]

(3)
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wheren is the number of test data which is equal to 200 and k is the number of end-
members which is equal to 12 in our experiments. Also,â is the estimated abundances
by the network. Generally speaking, the smaller mean estimation error is, the more the
estimation approximates the truth.

3 Experiments on Synthetic Hyperspectral Data

3.1 Synthetic Data

The spectral libraries ASTER [25] (Advanced Spaceborne Thermal Emission and Re-
flection Radiometer) and USGS [26] (United States Geological Survey) are used in our
experiments. The spectral signatures of some materials, taken from ASTER and USGS
spectral libraries, are used to construct specific library to be used in the experiments. The
spectral signatures of these materials are taken at different wavelengths and they have dif-
ferent spectral resolutions. Therefore, preprocessing isperformed at the beginning of the
experiments. For each material, spectral information between 0.4 and 2.45 micrometers
is taken into account and is extrapolated to 281 bands. The experiments were performed
with a subset library composed of 12 materials chosen from the spectral libraries. To ob-
tain synthetic mixture pixels, first of all, the endmember matrix M is generated using these
selected material signatures. Then, the matrix of fractional abundances, which satisfies
the constraints in Equation 2, are obtained using the Dirichlet distribution. These signa-
tures in the constructed library and the fractional abundances are used to obtain synthetic
mixture pixels within the framework of the linear mixture model as given in Equation 1.

The first synthetic hyperspectral training data set contains 1000 pixels randomly gener-
ated following a Dirichlet distribution. The signatures ofthese materials and the spectral
information of 1000 mixture pixels are shown in Figure 2. These 1000 mixture pixels are
used as training data.
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(a) Spectral signatures of 12 materials (b) Spectral information of mixture pixel

Figure 2: Spectral signatures of 12 materials taken from theASTER and USGS datasets
which are used in the experiments and 1000 mixture pixels produced from selected these
12 spectral signatures.

For the second synthetic hyperspectral training data, the abundances are generated in
the same way as the first synthetic data. But, this time 10000 mixture pixels are generated
randomly to investigate the effects of training data on the unmixing performance. The
200 test data is also generated in the same way.
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3.2 Results

The generated mixture pixels are used as training data and the corresponding fractional
abundances at each pixel are used as labels to train the convolutional neural network that
is presented in Section 2. The trained neural network is usedto find which signatures are
in the mixed test pixel and estimate the corresponding fractional abundances in the 200
test pixels. The error values between real abundances and the estimated abundances are
calculated using Equation 3. This error measures the average errors, that is, the difference
between real and estimated abundances. The mean estimationerrors of each structure are
given in Table 1.

Number of training data Mean Estimation Error
1000 0.0248
10000 0.0218

Table 1: The mean estimation errors of each structure

The estimation performances of the 20 test data are visualized with Hinton diagrams in
Figure 3. Hinton diagrams are a way of visualizing numericalvalues in a matrix/vector
and are used in the neural networks and machine learning literature. The size of each
square in the diagram represents the magnitude of each value. In Figure 3, each row
indicates the samples of 20 test data and each column indicates the real and estimated
fractional abundances of the samples.

(a) Real fractional abun-
dances

(b) Estimated abundances
with 1000 training data

(c) Estimated abundances
with 10000 training data

Figure 3: Hinton diagrams of real and estimated fractional abundances

It is seen from Figure 3 that the fractional abundances, which should actually be zero,
is suppressed and forced to be nearly zero when the convolutional neural network is used.
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But they are not exactly zero. This causes errors. Besides, the large fractional abun-
dances can be estimated correctly for the most part for each neural networks. This means
dominant materials can be found in the mixture pixels.

In order to examine the effects of noise on the unmixing performance of network, the
synthetic training data sets are contaminated by Gaussian white noise with two levels of
SNR: 30 and 40 dB. Network is trained using this noisy training data. The purpose of this
experiment is to examine how the performance of networks maybe affected if there are
differences between the spectral information in the hyperspectral image taken in real life
and the spectral signatures in the library. The mean estimation errors of the network for
noisy data are given in Table 2.

Number of training data Noise Level Mean Estimation Error

1000
30 dB 0.0295
40 dB 0.0264
No Noise 0.0248

10000
30 dB 0.0244
40 dB 0.0226
No Noise 0.0218

Table 2: The mean estimation errors of each structure

As the noise gets stronger, the performances of the trained networks reduces. Also, it
can be seen that the network trained with 10000 training databehaves better than the other
one.

4 Conclusion

In this study, convolutional neural network is proposed forlinear hyperspectral unmixing
and it is shown that CNNs are a good way to solve unmixig problems. The the effects
of the number of training data and the level of noise on unmixing performance is exam-
ined. It is observed that with the increase of training data,the estimation performance
of fractional abundances also increases. Convolutional neural network is less affected by
the increased level of noise with the increase of training data. It has been shown that
promising unmixing results have been achieved using convolutional neural network.

In the future, we plan to analyze unmixing performance of theconvolutional neural
network on real data and compare the performance of the method with sparse regression
based methods. In this study, 12 signatures were taken from the spectral library to con-
struct a subset library. In the future, we plan to obtain mixture pixels by taking a larger
size of material signatures from the library and to examine the performance of convolu-
tional neural network on them.
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