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Abstract — Hyperspectral imaging sensors provide image data comagifioth
spatial and detailed spectral information. However, du¢hi®low spatial resolution
or to the presence of intimate mixtures in the scene, themspatformation acquired
by the hyperspectral sensors are actually mixtures of tleetspl signatures of the
materials. These mixtures are modelled as linear or noalifiethe literature. In this
study, convolutional neural network is proposed for linégperspectral unmixing.
The spectral signatures of some materials, taken from thHEERSand USGS spec-
tral libraries, are used to construct a specific library to beed in the experiments.
These signatures in the constructed library are used toinlsgnthetic mixture pixels
within the framework of the linear mixture model. These unépixels are used for
training a convolutional neural network. The trained colutmnal neural network
is used for determining (i) which materials in the libraryeancluded in mixed pixels
and (ii) their corresponding fractional abundances thasbmodel each mixed test
pixel. Also, the effects of the number of training data amddvel of noise on unmix-
ing performance are investigated. It has been shown thah@iog unmixing results
have been achieved by using the convolutional neural né&twor
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1 Introduction

During recent years, convolutional neural network has lgagning a large amount of
interest in various vision-related tasks such as scendingié], digit classification [2],
character classification [3], face recognition [4]. Besigesion tasks, CNNs have been
demonstrated to be successful in other areas as well, susgeash recognition [5] and
natural language processing [6]. In this study, convohalmeural network is proposed
for hyperspectral unmixing.
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Hyperspectral imaging sensors provide image data contalmoth spatial and detailed
spectral information [7]. However, due to low spatial res@n of the sensors or to
the presence of intimate mixtures in the scene, the specfomation acquired by the
hyperspectral sensors are actually mixtures of the spesafgrzatures of the materials [8].
The mixtures are modelled as linear or nonlinear in thedttee. In this study, we focus
on the linear mixing model. In linear spectral unmixing, @ie is to decompose the
measured spectrum of a mixed pixel into reference speagaatires of the materials,
also called endmember (estimating endmembers), and éstenmset of corresponding
fractions, also called abundances that indicate the ptigposf each endmember present
in the pixel (estimating corresponding abundances)[9}. jFendmembers, each having
L bands, the linear mixing model is expressed as:

P
y:Zaimi+w:Ma+w (1)
i=1

wherey is the L x 1 pixel spectrum vector received by sensbf,is the L x p matrix
whose columns are the x 1 endmembers:;; a is thep x 1 fractional abundance vector
consisting ofa;, i, =1...p andw is the L x 1 additive perturbation vector (noise and
modeling errors). The fractional abundances are subjegbetollowing constraints:

p
Z a; =1
=1
The constraints are termed as the abundance nonnegatristraint (ANC) and the
abundance sum constraint (ASC) respectively.

Linear spectral unmixing has been extensively researamekel recent years. Many
methods have been developed for this problem. Most of thetbads are geometrical
or statistical based approaches. In geometrical basedaqpes, some methods make
an assumption for endmember extraction that there is atde@spure pixel in the scene
[10] [11] [12]. However, this assumption cannot be alwayargnteed. Some of the
other spectral unmixing methods do not make the pure pixeelraption for endmember
extraction [13] [14] [15] [16]. However, these methods gate endmember signatures
which are often not associated with the real physical sigeat[8] [9] [17]. In addition,
results obtained by these geometrical based methods aatisiastory when the spectral
mixtures are highly mixed. In these cases, statistical ouslare used as an alternative
[18] [19]. On the other hand, statistical methods have higleenputational complexity
in comparison with geometrical based methods [20]. Theawlcks and limitations
have led to the use of spectral libraries instead of endmeegianation. When using
libraries, the observed mixed pixel can be expressed aarlommbinations of a number
of pure spectral signatures which are taken from libraryusTlunmixing is equivalent to
determining which materials in the library are included irxead pixels and their corre-
sponding fractional abundances that can best model eaddmixel in the scene. Hence,
sparse regression based methods has been developed fsgegisal unmixing [21] [22]
[23].
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In this paper, a convolutional neural network is proposedi@rmine which materials
in the library are included in mixed pixels and their corr@sging fractional abundances
that can best model each mixed test pixel. Also, the effddtseonumber of training data
and the level of noise on unmixing performance are investjan synthetic hyperspec-
tral data. This paper is organized as follows: in sectioneZtoposed CNN architecture
for hyperspectral unmixing is introduced. In section 3 thgeziments using the synthetic
data are explained. In section 4 the paper is concluded withemnarks.

2 Proposed CNN Architecture

In this study, convolutional neural network is proposedigperspectral unmixing. Con-
volutional neural network structure which contains two\aduational layer and a fully
connected layer is used in the experiments. CNN is diregihfied on the spectral do-
main.

The proposed CNN architecture (the layers, the number ef filizes and number of
filters) is given in Figure 1. Fixed learning rate which is agto 0.01, is used. The
stopping condition for the CNN model is the fixed iteratiommher which is set to 2000.
Our experiments have shown that this is a large enough nutblg@rantee convergence.
Stochastic gradient descent is used as a learning methodrassl entropy is used as a
cost function. All the programs are implemented using Pytlamguage and Tensorflow
[24] library.
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Figure 1. The proposed CNN architecture: input represepisel spectral vector, fol-
lowed by 2 convolution layers, a fully connected layer andlfinthe output layer.

The mean estimation error is used to evaluate the abundatineatons. The error is
defined as:

n

k
o 11 .
Mean Estimation Erro& % Z [Z[aij - aij]] (3)

i=1  j=1
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wheren is the number of test data which is equal to 200 and k is the eumbend-
members which is equal to 12 in our experiments. Alsg the estimated abundances
by the network. Generally speaking, the smaller mean estmarror is, the more the
estimation approximates the truth.

3 Experimentson Synthetic Hyper spectral Data
3.1 Synthetic Data

The spectral libraries ASTER [25] (Advanced Spacebornermibe Emission and Re-
flection Radiometer) and USGS [26] (United States Geold@cavey) are used in our
experiments. The spectral signatures of some materi&isn tiom ASTER and USGS
spectral libraries, are used to construct specific libratyet used in the experiments. The
spectral signatures of these materials are taken at differ@velengths and they have dif-
ferent spectral resolutions. Therefore, preprocessipgrif®rmed at the beginning of the
experiments. For each material, spectral information betw0.4 and 2.45 micrometers
is taken into account and is extrapolated to 281 bands. Therements were performed
with a subset library composed of 12 materials chosen fransgectral libraries. To ob-
tain synthetic mixture pixels, first of all, the endmembetnmwaV is generated using these
selected material signatures. Then, the matrix of fraeli@bundances, which satisfies
the constraints in Equation 2, are obtained using the Detddtistribution. These signa-
tures in the constructed library and the fractional abundarmre used to obtain synthetic
mixture pixels within the framework of the linear mixture de as given in Equation 1.

The first synthetic hyperspectral training data set costa00 pixels randomly gener-
ated following a Dirichlet distribution. The signaturestbése materials and the spectral
information of 1000 mixture pixels are shown in Figure 2. 3&#8&000 mixture pixels are
used as training data.

(a) Spectral signatures of 12 materials (b) Spectral information of mixture pixel

Figure 2: Spectral signatures of 12 materials taken fromABEER and USGS datasets
which are used in the experiments and 1000 mixture pixelduymed from selected these
12 spectral signatures.

For the second synthetic hyperspectral training data, boe@dances are generated in
the same way as the first synthetic data. But, this time 1008ture pixels are generated
randomly to investigate the effects of training data on thenxing performance. The
200 test data is also generated in the same way.
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3.2 Results

The generated mixture pixels are used as training data andatinesponding fractional
abundances at each pixel are used as labels to train thelabomal neural network that
is presented in Section 2. The trained neural network is tesédd which signatures are
in the mixed test pixel and estimate the correspondingitraat abundances in the 200
test pixels. The error values between real abundances argstimated abundances are
calculated using Equation 3. This error measures the agenagrs, that is, the difference
between real and estimated abundances. The mean estimatosnof each structure are
given in Table 1.

Number of training data| Mean Estimation Error
1000 0.0248
10000 0.0218

Table 1: The mean estimation errors of each structure

The estimation performances of the 20 test data are vigdhlizth Hinton diagrams in
Figure 3. Hinton diagrams are a way of visualizing numernigles in a matrix/vector
and are used in the neural networks and machine learningtlite. The size of each
square in the diagram represents the magnitude of each. valuEigure 3, each row
indicates the samples of 20 test data and each column ieditia¢ real and estimated
fractional abundances of the samples.

(a) Real fractional abun- (b) Estimated abundances (c) Estimated abundances
dances with 1000 training data with 10000 training data

Figure 3: Hinton diagrams of real and estimated fractiobahaances

It is seen from Figure 3 that the fractional abundances, vbiould actually be zero,
is suppressed and forced to be nearly zero when the cormoduitieural network is used.
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But they are not exactly zero. This causes errors. Besitleslatge fractional abun-
dances can be estimated correctly for the most part for ematahnetworks. This means
dominant materials can be found in the mixture pixels.

In order to examine the effects of noise on the unmixing perémce of network, the
synthetic training data sets are contaminated by Gausdi#e woise with two levels of
SNR: 30 and 40 dB. Network is trained using this noisy tragrdata. The purpose of this
experiment is to examine how the performance of networks bbeagffected if there are
differences between the spectral information in the hygeasal image taken in real life
and the spectral signatures in the library. The mean esomatrors of the network for
noisy data are given in Table 2.

Number of training data] Noise Level Mean Estimation Error
30dB 0.0295
1000 40 dB 0.0264
No Noise 0.0248
30dB 0.0244
10000 40 dB 0.0226
No Noise 0.0218

Table 2: The mean estimation errors of each structure

As the noise gets stronger, the performances of the traietdonks reduces. Also, it
can be seen that the network trained with 10000 traininglughaves better than the other
one.

4 Conclusion

In this study, convolutional neural network is proposedifoear hyperspectral unmixing
and it is shown that CNNs are a good way to solve unmixig probleThe the effects
of the number of training data and the level of noise on unngpperformance is exam-
ined. It is observed that with the increase of training dtta, estimation performance
of fractional abundances also increases. Convolutionaiah@etwork is less affected by
the increased level of noise with the increase of training.ddt has been shown that
promising unmixing results have been achieved using comeolal neural network.

In the future, we plan to analyze unmixing performance of ¢bevolutional neural
network on real data and compare the performance of the mhettib sparse regression
based methods. In this study, 12 signatures were taken fieragdectral library to con-
struct a subset library. In the future, we plan to obtain om&tpixels by taking a larger
size of material signatures from the library and to examimeegerformance of convolu-
tional neural network on them.
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